The online community and resource center for all in life science related disciplines (BIOSCIENTISTS)
February 21, 2020, 08:28:51 am *
Welcome, Guest. Please login or register.

Login with username, password and session length
News: Over 3000 Nigerian Life scientists are on ground & willing to provide answers to your bioscience & research questions/problems; You only need to post it online Now! (Requires very brief registration)

To be kept up to date on interesting posts in this forum,  LIKE our facebook page!
.
 
   Home   Help Login Register  
Pages: [1]
  Print  
Author Topic: New nanoscale transistor allow sensitive probing inside cells - (Aug, 2010)  (Read 2519 times)
0 Members and 1 Guest are viewing this topic.
Francis Umeoguaju
Administrator
Expert in Bioscience Issues
*****
Posts: 657



WWW
« on: August 23, 2010, 04:14:12 pm »


New nanoscale transistor allow sensitive probing inside cells - (Aug, 2010 bioscience headlines)

Chemists and engineers at Harvard University have fashioned nanowires into a new type of V-shaped transistor small enough to be used for sensitive probing of the interior of cells.

The new device, described this week in the journal Science, is smaller than many viruses and about one-hundredth the width of the probes now used to take cellular measurements, which can be nearly as large as the cells themselves. Its slenderness is a marked improvement over these bulkier probes, which can damage cells upon insertion, reducing the accuracy or reliability of any data gained.

"Our use of these nanoscale field-effect transistors, or nanoFETs, represents the first totally new approach to intracellular studies in decades, as well as the first measurement of the inside of a cell with a semiconductor device," says senior author Charles M. Lieber, the Mark Hyman, Jr. Professor of Chemistry at Harvard. "The nanoFETs are the first new electrical measurement tool for intracellular studies since the 1960s, during which time electronics have advanced considerably."

Lieber and colleagues say nanoFETs could be used to measure ion flux or electrical signals in cells, particularly neurons. The devices could also be fitted with receptors or ligands to probe for the presence of individual biochemicals within a cell.

Human cells can range in size from about 10 microns (millionths of a meter) for nerve cells to 50 microns for cardiac cells. While current probes measure up to 5 microns in diameter, nanoFETs are several orders of magnitude smaller: less than 50 nanometers (billionths of a meter) in total size, with the nanowire probe itself measuring just 15 nanometers in diameter.

Aside from their small size, two features allow for easy insertion of nanoFETs into cells. First, Lieber and colleagues found that by coating the structures with a phospholipid bilayer – the same material cell membranes are made of – the devices are easily pulled into a cell via membrane fusion, a process related to that used to engulf viruses and bacteria.
"This eliminates the need to push the nanoFETs into a cell, since they are essentially fused with the cell membrane by the cell's own machinery," Lieber says. "This also means insertion of nanoFETs is not nearly as traumatic to the cell as current electrical probes. We found that nanoFETs can be inserted and removed from a cell multiple times without any discernible damage to the cell. We can even use them to measure continu-ously as the device enters and exits the cell." Read Full story>>

Sourced from <http://www.biologynews.net/archives/2010/08/12/new_nanoscale_transistors_allow_sensitive_probing_inside_cells.html>


Feel free to post your comments about this story here. Free and brief registration into our bioscience community is required before you can post your comments.
You can also access other interesting & Recent bioscience stories here.

Click here, to subscribe for our monthly free enewletters


You can also suggest new stories here


Logged

Chances favours the trained minds
Pages: [1]
  Print  
 
Jump to:  

Powered by MySQL Powered by PHP Powered by SMF 1.1.11 | SMF © 2006-2009, Simple Machines LLC
SMFAds for Free Forums
Valid XHTML 1.0! Valid CSS!