The effects of chloroquine on the histology and serum glucose of Sprague- Dawley rats

Dept Department of Biological Sciences, Bells University of Technology Ota, Ogun State
Dept Of Anatomy, College of Medicine, University of Lagos, Idi-Araba, Lagos State
(Research Work)
Correspondence to: Akinribido F.A. fumibos@yahoo.co.uk; +2348023654975

ABSTRACT

Ten male rats were exposed to chloroquine phosphate injection intraperitoneally (IP) for three days. The treated rats received 0.125ml/100g body weight of chloroquine phosphate injection intraperitoneally. Control rats received the same amount of normal saline intraperitoneally. Serum glucose level (mm mol/L) was investigated for controls and treated rats chloroquine caused a drastic reduction in the glucose level up to 61.36% reduction. This study shows that chloroquine makes the blood glucose level to be reduced at higher percentage when taken at a lower dosage for a short period of time. Histologically, blood film was made using leichman stains shows a reduction in the red and white blood cells in the treated rats compared with controls

Keywords: chloroquine, serum glucose level, Sprague dawley rats, histology

INTRODUCTION

Approximately 50-70% of chloroquine in plasma is bound to plasma proteins. The tissues exhibit particularly high binding to chloroquine especially those containing melanin, for example the retina. Significant binding also occurs in the liver, kidney and spleen. Chloroquine (Resochin, Avloclor, Nivaquine, Arelen) C_{18}H_{26}CIN_{3} 7-Chloro-4-(4'-diethlyamino-1'-methylamino)quinoline. Chloroquine is a white powder with a bitter taste, prepared by chemical synthesis. it is available as sulphate and phosphate salts. The sulphate (1 in 3) and the phosphate (1 in 4) are soluble in water. Chloroquine is best known as an antimalarial agent but it is also used in the treatment of rheumatoid arthritis. Chloroquine is effective against the erythrocytic stages of all four plasmodium species which cause human malaria with the exception of matured plasmodium falciparum gametocytes. The exact mechanisms of the action of chloroquine against malaria parasites are not fully understood. Parasitized red cells accumulate approximately 100-600 times as much chloroquine. The concentration of chloroquine in malaria parasite requires energy and is thought to require a membrane. There are three theories on the way state as that chloroquine, being a basic compound, is protonated in the lysosomes thus raising lysosomal pH. This effect may raise the intralysosomal pH above a critical level all bring about loss lysosomal function. This would reduce the parasite’s digestion of hemoglobin, and thus prevent its growth.

Chloroquine intercalates into double stranded DNA and inhibits both DNA and RNA synthesis. The intercalation theory suggests that chloroquine may be bound with increased affinity by certain parts of the genome and be toxic to the malaria parasite by selective accumulation in specific genes, inhibiting their expression. The ferrirprotorphyrin IX (FP) which inhibits sequestration of FP into malaria pigment. This could impair hemoglobin degradation and permits damage to the food vacuole sufficient to discharge its Ph gradient. Antimalarial activity is possessed equally by the enantiomers of chloroquine and the main metabolite desethlychloroquine is also active against chloroquine-sensitive Plasmodium. Chloroquine also has anti-inflammatory activity. The concentrations of chloroquine or hydrochloroquine found in serum in the treatment of rheumatoid disease raise the pH of acid vesicles in mammalian cell within 3-5 min in vitro. This and the observation that the view that chloroquine and hydroxychloroquine act in the rheumatic disease by raising the pH of acid vesicles. Effects of raised vesicle pH include inhibition lysosomal proteolysis, interference with the targeting of acid proteases and inhibition of cellular maturation. raise pH in the
macrophage vesicle can interfere with antigen processing. This is thought to be the explanation for the impaired antibody response to pre-exposure to human diploid cell rabies vaccine found in individual receiving concurrent chemoprophylaxis with chloroquine. In addition, chloroquine inhibits the chemotactic response of mononuclear cells and suppresses lymphocytes transformation.

MATERIALS AND METHODS
The twenty female Sprague-Dawley rats were collected from the Animal House of the College of Medicine University of Lagos Akoka, Lagos State.

They weighed between 100-150g and were fed with the normal rat feed from Pfizer PLC Ikeja Lagos. Weight of animals was taken twice daily throughout the duration of the experiment. Ten female rats were used as controls. The remaining ten female rats were labelled by ear puncture as treated rats and kept in cages. Administration of drug was 0.125ml of chloroquine/100g body weight for 3 days intrapertoneally. Chloroquine phosphate injection was obtained from the community pharmacy of the Lagos university teaching hospital (40mg/ml chloroquine phosphate injection). The control received the same quantity of normal saline.

Animal Sacrifice
At the expiration of the treatment the animals were sacrificed by diethyl ether decapitation and the rats blood was collected for glucose tests assessment.

Statistics
Statistical analysis was carried out using t-Distribution (t-test).

RESULTS

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>GLUCOSE (MM/MOL/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO-SERUM n=10</td>
<td>2.2±0.50</td>
</tr>
<tr>
<td>CQ-SERUM n=10</td>
<td>0.85±0.05</td>
</tr>
</tbody>
</table>

a=Mean±S.E.M
b=p<0.05
CO=CONTROL RATS
CQ= CHLOROQUINE TREATED RATS

DISCUSSION
Chloroquine caused 61.36% reduction in the serum glucose level at a low dosage for a short time for treated rats compared with controls.

CONCLUSION
Chloroquine should be taken under the supervision of a licensed medical professional.
REFERENCES

